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INTRODUCTION 

The k i n e t i c s  and mechanism o f  carbon g a s i f i c a t i o n  have been t h e  s u b j e c t  o f  
many i n v e s t i g a t i o n s .  
o f ten  compl icated by u n c e r t a i n t i e s  concern ing t h e  i d e n t i t y ,  a c t i v i t y ,  and number 
of g a s i f i c a t i o n  s i t e s .  I n  the  prev ious paper, a d i spe rsed  s i t e  p i c t u r e  was p re -  
sented f o r  c a t a l y s i s  o f  carbon g a s i f i c a t i o n  by potassium. 
wel l -def ined,  rep roduc ib le  system c o n s i s t i n g  o f  a p r e d i c t a b l e  number o f  essen- 
t i a l l y  e q u i v a l e n t  c a t a l y t i c  s i t e s ,  and i s  t h e r e f o r e  w e l l  s u i t e d  f o r  k i n e t i c  
s tud ies .  
( b e l i e v e d  t o  be an elementary s tep  i n  g a s i f i c a t i o n )  a t  t h e  c a t a l y t i c  s i t e s .  
paper W i l l  d iscuss those r e s u l t s  and some mechanis t ic  i m p l i c a t i o n s .  

EXPERIMENTAL 

K i n e t i c  measurements and mechanis t ic  i n t e r p r e t a t i o n s  a re  

Th is  appears t o  be a 

We have examined the  k i n e t i c s  o f  bo th  g a s i f i c a t i o n  and oxygen exchange 
Th is  

The k i n e t i c  exper iments were performed i n  a sma l l ,  atmospher ic pressure 
f i x e d  bed r e a c t o r  charged w i t h  about  0.25 g. o f  ca ta l yzed  char  o r  carbon. H20 
f rom a s y r i n g e  pump and o t h e r  gases metered through a gas m a n i f o l d  system were 
mixed and preheated i n  the  t o p  p o r t i o n  o f  t h e  r e a c t o r .  
moved f rom t h e  p roduc t  gas which was then f e d  d i r e c t l y  in to  a GC and/or MS f o r  
ana lys i s .  
w i t h  K2C03. d r i e d  i n  a vacuum oven, and d e v o l a t i l i z e d  under N2 a t  700oC f o r  30 
minutes . 

Unreacted H20 was r e -  

Both coa ls  and model carbons were impregnated t o  i n c i p i e n t  wetness 

RESiLTS AND DISCUSSION 

OVERALL KINETICS 

It i s  w e l l  known t h a t  g a s i f i c a t i o n  o f  carbon by Hz0 i s  h i g h l y  p roduc t  i n -  
h i b i t e d .  ( 1 )  F igu re  1 shows t h a t  t h e  g a s i f i c a t i o n  r a t e  increases l i n e a r l y  with 
t h e  ( H 2 0 ) / ( b )  r a t i o  over  a broad range. The impact o f  p roduc t  i n h i b i t i o n  must 
be c a r e f u l l y  cons idered when t r e a t i n g  the  k i n e t i c s  o f  these systems i n  i n t e g r a l  
reac to rs .  
i n  a p s e u d o - d i f f e r e n t i a l  mode by feed ing  a m i x t u r e  o f  H7.0 andHzacross  t h e  carbon 
bed a t  l ow  Hz0 convers ions and a t  s u f f i c i e n t  (H20)/(H2) r a t i o  so t h a t  t h e  r e -  
a c t i v i t y  o f  t h e  gas d i d  n o t  change s i g n i f i c a n t l y  across t h e  bed. 

Fo r  s i m p l i c i t y ,  t h e  k i n e t i c  data r e p o r t e d  i n  t h i s  paper were ob ta ined  
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I n  developing a mechanism f o r  g a s i f i c a t i o n ,  t h e  s t rong product i n h i b i t i o n  
must be explained. 
carbon oxides as g a s i f i c a t i o n  intermediates i s  t h e  key t o  many mechanist ic schemes. 
A simple sur face  ox ide  mechanism has been discussed f requen t l y  i n  t h e  l i t e r a t u r e :  (2 )  

The concept o f  gas/carbon oxygen exchange i n v o l v i n g  surface 

1) 
k l , O  
‘k-1 

H20 + F c + HZ OXYGEN EXCHANGE 

k2 
0 C ---+ CO + c SURFACE O X I D E  DECOMPOSITION 2 )  

I n  t h e  contex t  o f  t h e  dispersed s i t e  p i c t u r e  f o r  potassium ca ta l yz  d gas i f i ca -  
t i on ,  C i s  a carbon atom associated w i t h  an a c t i v e  c a t a l y t i c  s i t e ,  and 4 i s  the 
ox id i zed  form o f  t h e  a c t i v e  s i t e .  Upon decomposition o f  t h e  sur face  ox ide  a new 
s i t e  i s  regenerated perhaps as t h e  a l k a l i  specie becomes associated w i t h  another 
carbon. The number o f  a c t i v e  s i t es ,  C t ,  remains approximately constant up t o  h igh  
carbon conversions as r e f l e c t e d  by t h e  f l a t  g a s i f i c a t i o n  bu rno f f  curves discussed i n  
the  previous paper. 

According t o  t h i s  and s i m i l a r  mechanisms, t h e  g a s i f i c a t i o n  r a t e  i s  p ropor t iona l  
t o  the  number o f  su r face  oxides present under g a s i f i c a t i o n  cond i t ions ,  dc /d t  = ( e ) .  
This  scheme suggests t h a t  Hz i n h i b i t s  g a s i f i c a t i o n  by decreasing the  number o f  surface 
oxides through the  reverse oxygen exchange reac t ion .  (Several o the r  mechanisms have 
been proposed i n  which H2 i s  thought t o  b lock  a c t i v e  g a s i f i c a t i o n  s i t e s  through 
chemisorpt ion.(3))  I f  the  oxygen exchange reac t i on  i s  i n  e q u i l i b r i u m  and the  number 
o f  surface oxides i s  determined by  t h e  e q u i l i b r i u m  constant o f  reac t i on  1 ( i . e .  
(F) / (c )  = K1(H20)/(H2)) then the  r e l a t i v e  ra tes  o f  g a s i f i c a t i o n  o f  carbon by d i f f e r e n t  
reactants can be p r e d i c t e d  by t h e i r  r e l a t i v e  oxygen a c t i v i t i e s .  
r e l a t i v e  ra tes  o f  carbon g a s i f i c a t i o n  i n  H20 and D20 a t  t h e  same (H20)/(H2) and 
(D20)/(D2) r a t i o  would be given by t h e  r a t i o  o f  t h e  oxygen exchange equ i l i b r i um 
constants, i .e. 

For example, t h e  

RATE, HzO - K i ,  H20 
RATE, Dz0 K i ,  Dz0 

Th is  r a t i o  i s  equ iva len t  t o  t h e  e q u i l i b r i u m  constant f o r  t h e  reac t i on  H20 + D2eD20 + H z ,  
which can be c a l c u l a t e d  from thermchemical  data and i s  p l o t t e d  i n  F igure  2 as a func t i on  
of temperature. 
l i n e  i n  t h e  temperature range s tud ied .  
an important f a c t o r  i n  determining t h e  g a s i f i c a t i o n  r a t e .  Th is  supports the  idea t h a t  
H2 i n h i b i t i o n  occurs through reve rsa l  o f  oxygen exchange ra the r  than by s i t e  b lock ing  
due t o  chemisorpt ion.  

assuming a s i t e  ba lance C t  = T + 5, a Langmuir-Hinshelwood type r a t e  expression can 
be der ived ( 2 )  : 

The data f o r  t he  measured r a t e  r a t i o s  f a l l  very near the  pred ic ted  
Oxygen a c t i v i t y  there fore  does appear t o  be 

From t h e  simple sur face  ox ide  mechanism represented by Equations 1 and 2, 

k i  kz C t  (Hz0) 
d t  = kl(H20) + k-, (Hz) + kz- ’ 

3) 

For agreement w i t h  the ove ra l l  g a s i f i c a t i o n  k i n e t i c s ,  t h i s  expression must be reduced 
t o  a form which r e f l e c t s  the  l i n e a r  dependence o f  t h e  r a t e  on the  (H20)/(H2) r a t i o .  
Th i s  d i c ta tes  t h a t  t h e  km1(H2) term dominate the  denominator, i n  which case the r a t e  
equat ion reduces t o  
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The k- i (H2) term w i l l  outweigh t h e  o ther  terms i n  the  denominator i f  the  oxygen 
exchange reac t i on  i s  i n  equ i l i b r i um,  the  equ i l i b r i um constant i s  smal l ,  and the  
subsequent surface oxide decomposition i s  slow. 
dependence of t he  r a t e  on the  (H20)/(H2) r a t i o ,  Equation 4 a l so  r e f l e c t s  the  
l i n e a r  dependence o f  t he  r a t e  on c a t a l y s t  load ing  discussed i n  the  previous paper, 
and on the  oxygen a c t i v i t y  o f  t he  gas ( i .e.K1).  

understanding how a number o f  f a c t o r s  can in f l uence  the  g a s i f i c a t i o n  ra te .  
f u r the r  eva lua t ion  o f  t h i s  mechanism, t h e  assumptions which had t o  be made i n  
order t o  reduce t h e  r a t e  expression t o  a reasonable form must be tes ted .  
was done by studying the  k i n e t i c s  o f  the oxygen exchange reac t ion .  

OXYGEN EXCHANGE 

I n  a d d i t i o n  t o  p rov id ing  fo r  t h e  

Th is  s imple mechanism based on the  concept o f  oxygen exchange i s  useful i n  
For 

This 

The oxygen exchange reac t i ons  can be r e a d i l y  fo l lowed us ing  i s o t o p i c  exchange 
techniques. 
fed across the  carbon bed. Since, as i t  w i l l  be demonstrated, oxygen exchange i s  
very  f a s t  compared t o  g a s i f i c a t i o n ,  t h e  experiments can be performed a t  cond i t i ons  
where t h e  g a s i f i c a t i o n  r a t e  i s  n e g l i g i b l e .  I so top ic  scrambl ing occurs as H20 and 
02 undergo oxygen exchange w i t h  the cata lyzed carbon according t o  Equat ion 1. I n  
the  experiments the  water products (H20, HDO, and D 0) were t rapped o u t  of the  
product stream and the gas products (H,, HD, and D 2 j  were fed  d i r e c t l y  i n t o  a mass 
spectrometer f o r  ana lys is .  A t  g a s i f i c a t i o n  condi t ions,  s t a t i s t i c a l  scrambl ing o f  
the  isotopes between the  gas and water products was observed, i n d i c a t i n g  t h a t  t h e  
reac t i on  was i n  equ i l i b r i um.  
equ i l ib r ium,  the  r a t e  o f  oxygen exchange was ca l cu la ted  from the  r a t e  o f  appear- 
ance o f  H i n  the  gas products. (4 )  

Turnover ra tes  (per  C atom) f o r  H,O/c oxygen exchange were measured f o r  
I l l i n o i s  char as a func t i on  o f  K2C03 load ing  (expressed as K/C atomic r a t i o )  and 
a re  shown i n  F igure  3. The g a s i f i c a t i o n  r a t e  i s  p l o t t e d  as w e l l  f o r  comparison. 
The oxygen exchange r a t e  increases l i n e a r l y  wi th c a t a l y s t  load ing  u n t i l  s a t u r a t i o n  
which occurs a t  a K/C atomic r a t i o  o f  approximately 0.12/1. The f i gu re  inc ludes  
data f o r  several  o ther  carbon forms as w e l l .  Below c a t a l y s t  s a t u r a t i o n  the  oxygen 
exchange r a t e  shows very  l i t t l e  dependence on the  form o f  the  carbon subs t ra te .  
I n  both instances t h i s  p a r a l l e l s  the behavior o f  the  g a s i f i c a t i o n  r a t e  (as discuss- 
ed i n  previous paper), very  s t rong  evidence t h a t  oxygen exchange i s  occur r ing  a t  
the  g a s i f i c a t i o n  s i t e s .  Al though they were measured a t  a lower temperature, t he  
ra tes  o f  oxygen exchange were considerably h igher  than the  g a s i f i c a t i o n  ra tes ,  
i n d i c a t i n g  t h a t  the  measured oxygen exchange i s  no t  r a t e  c o n t r o l l i n g  i n  g a s i f i -  
ca t ion .  

For the  case of  H,O/c oxygen exchange, a m ix tu re  o f  H20 and D2 i s  

Under cond i t ions  a t  which the  reac t i on  was no t  a t  

The k i n e t i c s  o f  oxygen exchange occur r ing  a t  the g a s i f i c a t i o n  s i t e s  a re  i m -  
po r tan t  i n  developing and eva lua t ing  an o v e r a l l  g a s i f i c a t i o n  mechanism. 
shows t h a t  oxygen exchange i s  f i r s t  order i n  (D2) and e s s e n t i a l l y  independent o f  
(H20): I n  terms o f  t he  s imple oxygen exchange model, oxygen exchange occurs v i a  
Equation 1, and a Langmuir-Hinshelwood type expression can be der ived  f o r  the r a t e  
o f  oxygen exchange: 

F igure  4 

L.. 0 
H20 + C 7 H 2 + i 5  

5) 
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For the model t o  be c o n s i s t e n t ,  t he  cond i t i ons  imposed on the  va r ious  r a t e  co- 
e f f i c i e n t s  i n  d e r i v i n g  the o v e r a l l  r a t e  express ion (Equations 3 and 4) must 
a p p l y  here as we l l .  Th i s  r e q u i r e s  that the  k-1(H2) term aga in  dominate the  
denominator, i n  which case Equat ion 5 reduces t o  

RATE = k i (HzO)Ct  6) 

Th is  p r e d i c t s  t h a t  t h e  oxygen exchange r a t e  should be f i r s t  o rde r  i n  (H20), i n  
d i r e c t  c o n f l i c t  wi th the  da ta  shown i n  F igu re  4. 
made i n  d e r i v i n g  a reasonable r a t e  express ion f rom t h e  s imple model were there-  
f o r e  i n c o r r e c t ,  i n d i c a t i n g  t h a t  t he  simple model cannot adequate ly  descr ibe the  
system. 
c o n c i l e  the data,  and these w i l l  be the  s u b j e c t  o f  f u t u r e  s t u d i e s .  

The assumptions which were 

More complex oxygen exchange models can be v i s u a l i z e d  which could r e -  

K i n e t i c  s t u d i e s  o f  g a s i f i c a t i o n  and oxygen exchange i n  the  C02-carbon system 
have a l so  been performed as p a r t  o f  t h i s  i n v e s t i g a t i o n .  
mechanism f o r  C02 g a s i f i c a t i o n  analogous t o  t h a t  d iscussed here f o r  H20 g a s i f i c a -  
t i o n  has been proposed i n  t h e  l i t e r a t u r e  ( 2 ) .  
analogy between t h e  two systems. 
drawn f o r  t h e  C02-carbon system were e s s e n t i a l l y  i d e n t i c a l  t o  those discussed 
here f o r  t h e  H20-carbon system. 

An oxygen exchange 

Our r e s u l t s  do suppor t  a s t rong  
The k i n e t i c  r e s u l t s  and mechanis t ic  i m p l i c a t i o n s  

CONCLUSIONS 

Oxygen exchange i s  ca ta l yzed  by the potassium g a s i f i c a t i o n  c a t a l y s t  and 

Th is  i m p l i e s  the p a r t i c i p a t i o n  o f  a c r i t i c a l  su r face  
However, t h i s  c r i t i c a l  ox ide  does n o t  r e a c t  w i t h  the  gas 

occurs a t  t h e  same s i t e s  as g a s i f i c a t i o n .  Product i n h i b i t i o n  o f  g a s i f i c a t i o n  
occurs through r e v e r s a l  of t h e  oxygen exchange r e a c t i o n  by the  p roduc t  r a t h e r  
than by chemiso rp t i on .  
ox ide  i n  g a s i f i c a t i o n .  
phase v i a  Equat ion 1 as the  dominant mode o f  oxygen exchange. 
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